解:直接相加得
(a^2+2ab+2b^2)/(a^2+3ab+2b^2)
=(a^2+3ab-ab+2b^2)/(a^2+3ab+2b^2)
=1- ab/(a^2+3ab+2b^2)
=1- 1/[(a/b)+(2b/a)+3](相当于分子分母同除以ab)
因为a,b都是负实数,所以a/b,2b/a都为正实数
那么上式分母中的(a/b)+(2b/a)可以利用基本不等式求出最小值
最小值为(a/b)*(2b/a)的开方*2,即为2√2
(a/b)+(2b/a)有最小值,即1/[(a/b)+(2b/a)+3]有最大值
那么1- 1/[(a/b)+(2b/a)+3]可得最小值
最小值=1- 1/(2√2 + 3)=2√2 - 2
好题啊
(a^2+2ab+2b^2)/(a^2+3ab+2b^2)
=(a^2+3ab-ab+2b^2)/(a^2+3ab+2b^2)
=1- ab/(a^2+3ab+2b^2)
=1- 1/[(a/b)+(2b/a)+3](相当于分子分母同除以ab)
因为a,b都是负实数,所以a/b,2b/a都为正实数
那么上式分母中的(a/b)+(2b/a)可以利用基本不等式求出最小值
最小值为(a/b)*(2b/a)的开方*2,即为2√2
(a/b)+(2b/a)有最小值,即1/[(a/b)+(2b/a)+3]有最大值
那么1- 1/[(a/b)+(2b/a)+3]可得最小值
最小值=1- 1/(2√2 + 3)=2√2 - 2
好题啊