为什么要暴涨?
我们之所以认为暴涨曾经发生过,是因为宇宙看起来非常均匀平滑。你可能会觉得,宇宙一点儿都不平滑,明明有些地方密密麻麻挤满了物质和能量,而其他地方却完全是空空荡荡的。但是,如果在一个真正巨大的尺度上去看遥远而又古老的宇宙,我们就会发现宇宙平滑到了让人感到不可思议的地步。望远镜可以遥望宇宙深处,检验宇宙诞生时遗留下来的余热,测量其中的起伏。令人吃惊的是,其中起伏的幅度仅有大约10万分之一。暴涨解决了这个难题:宇宙一开始是疙疙瘩瘩的,但在那段极端膨胀的时期内,所有的起伏都被抹平了。就好像一块皱皱巴巴的床单,从各个方向拉床单,上面的皱褶就消失了。
不仅如此,暴涨还解决了宇宙几何形状的难题。我不会在这里解释细节,如果你感兴趣,可以去找更多的内容来阅读。重点在于,天文学家构想出了暴涨这个点子,用来解释我们在现在的宇宙中看到的一些古怪特性,而且暴涨也确实很好地完成了任务。这么多年来,它都表现很好。
但问题在于,所有这些都只能是间接证据。科学家更喜欢直接证据,但我们之前还没有找到过暴涨的任何直接证据。
时空中的涟漪
直到现在。这正是最新公布的这些结果所要证明的事情。暴涨模型预言,还有其他的标记被遗留在宇宙之中,其中之一便是:宇宙在经历迅速膨胀的时候,会在时空结构中产生出涟漪,被称为引力波。这些引力波,实际上就是空间本身十分细微的膨胀和压缩,它们会像声波一样在时空连续体中传播。我们知道引力波是存在的——我们在天文学观测中看到过它们产生的作用,还有两位天文学家因为发现了引力波的实例而分享了1993年的诺贝尔物理学奖。但是,想要看见来自宇宙暴涨时期的引力波,是一件极其困难的事情。
我们看不见这些引力波,但我们可以检测它们光线的影响,确切地说,那些光线来自早期的宇宙。引力波会使这些光线发生极化,在某种意义上说,相当于以特定的方式把这些光波排列起来。使光线发生极化的方式可以有许多种,它们都各不相同,但是引力波可以留下一种非常特殊的极化模式(被称为B模式极化,能够扭曲和卷曲极化的方向,参见本文题图)。在宇宙大爆炸留下的余光中找到这种极化模式,就会成为引力波的明确证据。而B模式极化信号,正是位于南极洲的一台名为BICEP2的望远镜最终检测到的极化模式。

【宇宙暴胀会有微波背景辐射的图案中留下独特的偏振模式。图片来源:《新科学家》】
还能跟得上吗?我知道,这些东西看起来离我们的日常生活都极其遥远,但事实上,这确实是非常大的一件事情。在不久以前,暴涨还只是一个非常棒的想法,是理解我们的宇宙如何从最初诞生的那一刻演化到今天我们所见包罗万象的关键一环,但是没有任何直接的证据证明它确确实实发生过。现在,我们有直接证据了。